Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
J Neuromuscul Dis ; 4(4): 293-306, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29125504

RESUMEN

BACKGROUND: Recent short-term clinical trials in patients with Duchenne Muscular Dystrophy (DMD) have indicated greater disease variability in terms of progression than expected. In addition, as average life-expectancy increases, reliable data is required on clinical progression in the older DMD population. OBJECTIVE: To determine the effects of corticosteroids on major clinical outcomes of DMD in a large multinational cohort of genetically confirmed DMD patients. METHODS: In this cross-sectional study we analysed clinical data from 5345 genetically confirmed DMD patients from 31 countries held within the TREAT-NMD global DMD database. For analysis patients were categorised by corticosteroid background and further stratified by age. RESULTS: Loss of ambulation in non-steroid treated patients was 10 years and in corticosteroid treated patients 13 years old (p = 0.0001). Corticosteroid treated patients were less likely to need scoliosis surgery (p < 0.001) or ventilatory support (p < 0.001) and there was a mild cardioprotective effect of corticosteroids in the patient population aged 20 years and older (p = 0.0035). Patients with a single deletion of exon 45 showed an increased survival in contrast to other single exon deletions. CONCLUSIONS: This study provides data on clinical outcomes of DMD across many healthcare settings and including a sizeable cohort of older patients. Our data confirm the benefits of corticosteroid treatment on ambulation, need for scoliosis surgery, ventilation and, to a lesser extent, cardiomyopathy. This study underlines the importance of data collection via patient registries and the critical role of multi-centre collaboration in the rare disease field.


Asunto(s)
Distrofia Muscular de Duchenne/epidemiología , Distrofia Muscular de Duchenne/terapia , Adolescente , Corticoesteroides/uso terapéutico , Adulto , Niño , Preescolar , Estudios Transversales , Bases de Datos como Asunto , Humanos , Lactante , Recién Nacido , Masculino , Distrofia Muscular de Duchenne/genética , Resultado del Tratamiento , Adulto Joven
3.
Muscle Nerve ; 53(1): 44-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25900853

RESUMEN

INTRODUCTION: The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. METHODS: All requests for DNA analysis of the DMD gene in probands with suspected BMD were re-evaluated. If the phenotype was compatible with BMD, and no deletions or duplications were detected, DNA samples were screened for small mutations. RESULTS: In 79 of 185 referrals, no mutation was found. Analysis could be performed on 31 DNA samples. Seven different mutations, including 3 novel ones, were found. Long-term clinical follow-up is described. CONCLUSIONS: Refining DNA analysis in previously undiagnosed cases can identify mutations in the DMD gene and provide genetic diagnosis of BMD. A delayed diagnosis can still be valuable for the proband or the relatives of BMD patients.


Asunto(s)
Análisis Mutacional de ADN , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Mutación/genética , Anoctaminas , Canales de Cloruro/genética , Femenino , Humanos , Masculino , Estudios Retrospectivos
4.
Muscle Nerve ; 53(1): 38-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25847364

RESUMEN

INTRODUCTION: Exon-skipping drugs in Duchenne muscular dystrophy (DMD) aim to restore truncated dystrophin expression, which is present in the milder Becker muscular dystrophy (BMD). MRI skeletal muscle T2 relaxation times as a representation of edema/inflammation could be quantitative outcome parameters for such trials. METHODS: We studied T2 relaxation times, adjusted for muscle fat fraction using Dixon MRI, in lower leg muscles of DMD and BMD patients and healthy controls. RESULTS: T2 relaxation times correlated significantly with fat fractions in patients only (P < 0.001). After adjusting for muscle fat, T2 relaxation times were significantly increased in 6 muscles of DMD patients (P < 0.01), except for the extensor digitorum longus. In BMD, T2 relaxation times were unchanged. CONCLUSIONS: T2 relaxation times could be a useful outcome parameter in exon-skipping trials in DMD but are influenced by fat despite fat suppression. This should be accounted for when using quantitative T2 mapping to investigate edema/inflammation.


Asunto(s)
Imagen por Resonancia Magnética , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Relajación , Adolescente , Adulto , Niño , Femenino , Humanos , Pierna/patología , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Hum Mutat ; 36(4): 395-402, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25604253

RESUMEN

Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations).


Asunto(s)
Bases de Datos Genéticas , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Mutación , Humanos , Sistema de Registros
6.
J Neurol Neurosurg Psychiatry ; 86(10): 1060-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25476005

RESUMEN

OBJECTIVE: Duchenne muscular dystrophy (DMD) is characterised by progressive muscle weakness. It has recently been reported that single nucleotide polymorphisms (SNPs) located in the SPP1 and LTBP4 loci can account for some of the inter-individual variability observed in the clinical disease course. The validation of genetic association in large independent cohorts is a key process for rare diseases in order to qualify prognostic biomarkers and stratify patients in clinical trials. METHODS: Duchenne patients from five European neuromuscular centres were included. Information about age at wheelchair dependence and steroid use was gathered. Melting curve analysis of PCR fragments or Sanger sequencing were used to genotype SNP rs28357094 in the SPP1 gene in 336 patients. The genotype of SNPs rs2303729, rs1131620, rs1051303 and rs10880 in the LTBP4 locus was determined in 265 patients by mass spectrometry. For both loci, a multivariate analysis was performed, using genotype/haplotype, steroid use and cohort as covariates. RESULTS: We show that corticosteroid treatment and the IAAM haplotype of the LTBP4 gene are significantly associated with prolonged ambulation in patients with DMD. There was no significant association between the SNP rs28357094 in the SPP1 gene and the age of ambulation loss. CONCLUSIONS: This study underlines the importance of replicating genetic association studies for rare diseases in large independent cohorts to identify the most robust associations. We anticipate that genotyping of validated genetic associations will become important for the design and interpretation of clinical trials.


Asunto(s)
Proteínas de Unión a TGF-beta Latente/genética , Distrofia Muscular de Duchenne/genética , Osteopontina/genética , Factores de Edad , Niño , Estudios de Cohortes , Progresión de la Enfermedad , Europa (Continente) , Femenino , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Pronóstico , Reproducibilidad de los Resultados , Esteroides/uso terapéutico , Caminata , Silla de Ruedas
7.
PLoS One ; 9(12): e115200, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506914

RESUMEN

OBJECTIVE: The aim of this study was to evaluate age-related changes in metabolic walking energy expenditure in ambulant boys affected by Duchenne muscular dystrophy over a follow-up period of 12 months. METHODS: At baseline (T1) and 12 months later (T2), metabolic walking energy expenditure was assessed during a 6-minute walk test at comfortable speed in 14 ambulant boys with Duchenne (age range: 6.0-12.5 years, mean 8.2). Outcome measures derived from the assessment included the 6-minute comfortable walking distance (m) and net-nondimensional energy cost relative to speed-matched control cost (SMC-EC, %). Statistical comparisons were made using a two-way repeated measures ANOVA (factors: time (T1 versus T2) and age (<8 years of age (yoa) versus ≥8 yoa)). RESULTS: Over the course of the study, a significant decrease of -28m (-8.2%, p = 0.043) was noted in the walked distance at comfortable speed. Besides, SMC-EC increased with 4.4%, although this change was not significant (p = 0.452). Regarding age groups, boys below 8 yoa showed a smaller annual decrease in the walked distance (-15 m) compared to boys above 8 yoa (-37 m). SMC-EC increased with 10% in the older boys, while in the younger boys it decreased (-2.1%). The main effect of age group on walking distance and SMC-EC however was not significant (p>0.158), and also there were no interaction effects (p>0.248). CONCLUSIONS: The results of our small study suggest that the natural course of walking performance in ambulant boys with Duchenne is characterized by a decrease in comfortable walking distance and an increase in walking energy cost. The rate of energy cost seems to increase with age, while walking distance decreases, which is opposite from the trend in typically developing children.


Asunto(s)
Metabolismo Energético/fisiología , Distrofia Muscular de Duchenne/fisiopatología , Caminata/fisiología , Factores de Edad , Niño , Prueba de Esfuerzo , Humanos , Masculino
8.
Ann Neurol ; 76(3): 403-11, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25043804

RESUMEN

OBJECTIVE: Duchenne muscular dystrophy (DMD) is characterized by progressive muscle weakness caused by DMD gene mutations leading to absence of the full-length dystrophin protein in muscle. Multiple dystrophin isoforms are expressed in brain, but little is known about their function. DMD is associated with specific learning and behavioral disabilities that are more prominent in patients with mutations in the distal part of the DMD gene, predicted to affect expression of shorter protein isoforms. We used quantitative magnetic resonance (MR) imaging to study brain microstructure in DMD. METHODS: T1-weighted and diffusion tensor images were obtained on a 3T MR scanner from 30 patients and 22 age-matched controls (age = 8-18 years). All subjects underwent neuropsychological examination. Group comparisons on tissue volume and diffusion tensor imaging parameters were made between DMD patients and controls, and between 2 DMD subgroups that were classified according to predicted Dp140 isoform expression (DMD_Dp140(+) and DMD_Dp140(-) ). RESULTS: DMD patients had smaller total brain volume, smaller gray matter volume, lower white matter fractional anisotropy, and higher white matter mean and radial diffusivity than healthy controls. DMD patients also performed worse on neuropsychological examination. Subgroup analyses showed that DMD_Dp140(-) subjects contributed most to the gray matter volume differences and performed worse on information processing. INTERPRETATION: Both gray and white matter is affected in boys with DMD at a whole brain level. Differences between the DMD_Dp140(-) subgroup and controls indicate an important role for the Dp140 dystrophin isoform in cerebral development.


Asunto(s)
Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos , Distrofia Muscular de Duchenne/patología , Sustancia Blanca/patología , Adolescente , Corteza Cerebral/patología , Niño , Imagen de Difusión Tensora/instrumentación , Imagen de Difusión Tensora/métodos , Distrofina/genética , Humanos , Imagen por Resonancia Magnética/instrumentación , Masculino , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Mutación/genética , Fibras Nerviosas Mielínicas/patología , Isoformas de Proteínas/genética
9.
Hum Mutat ; 34(11): 1449-57, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23913485

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease, caused by the absence of the dystrophin protein. Although many novel therapies are under development for DMD, there is currently no cure and affected individuals are often confined to a wheelchair by their teens and die in their twenties/thirties. DMD is a rare disease (prevalence <5/10,000). Even the largest countries do not have enough affected patients to rigorously assess novel therapies, unravel genetic complexities, and determine patient outcomes. TREAT-NMD is a worldwide network for neuromuscular diseases that provides an infrastructure to support the delivery of promising new therapies for patients. The harmonized implementation of national and ultimately global patient registries has been central to the success of TREAT-NMD. For the DMD registries within TREAT-NMD, individual countries have chosen to collect patient information in the form of standardized patient registries to increase the overall patient population on which clinical outcomes and new technologies can be assessed. The registries comprise more than 13,500 patients from 31 different countries. Here, we describe how the TREAT-NMD national patient registries for DMD were established. We look at their continued growth and assess how successful they have been at fostering collaboration between academia, patient organizations, and industry.


Asunto(s)
Bases de Datos Factuales , Distrofia Muscular de Duchenne , Sistema de Registros , Bases de Datos Factuales/economía , Geografía Médica , Salud Global , Humanos , Distrofia Muscular de Duchenne/economía , Distrofia Muscular de Duchenne/epidemiología
10.
FASEB J ; 27(12): 4909-16, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23975932

RESUMEN

Duchenne and Becker muscular dystrophies are caused by out-of-frame and in-frame mutations, respectively, in the dystrophin encoding DMD gene. Molecular therapies targeting the precursor-mRNA are in clinical trials and show promising results. These approaches will depend on the stability and expression levels of dystrophin mRNA in skeletal muscles and heart. We report that the DMD gene is more highly expressed in heart than in skeletal muscles, in mice and humans. The transcript mutated in the mdx mouse model shows a 5' to 3' imbalance compared with that of its wild-type counterpart and reading frame restoration via antisense-mediated exon skipping does not correct this event. We also report significant transcript instability in 22 patients with Becker dystrophy, clarifying the fact that transcript imbalance is not caused by premature nonsense mutations. Finally, we demonstrate that transcript stability, rather than transcriptional rate, is an important determinant of dystrophin protein levels in patients with Becker dystrophy. We suggest that the availability of the complete transcript is a key factor to determine protein abundance and thus will influence the outcome of mRNA-targeting therapies.


Asunto(s)
Distrofina/genética , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Codón sin Sentido , Distrofina/metabolismo , Ectima Contagioso , Exones , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocardio/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...